
Additional Empirical Techniques 

Take the simple mincerian equation (income x schooling), below: 

𝐿𝑛 𝑌𝑖 = 𝛽0 + 𝛽1𝑆𝑖 + 𝛽𝑘𝛾𝑘,𝑖 + 𝜀𝑖   (1) 

 There are two initial problems in a model which may bias β: 

 

1. Omitted variable bias: 

Imagine that a true population model is 

𝐿𝑛 𝑌 = 𝛽0 + 𝛽1𝑆 + 𝛽2𝑆𝑓 + 𝑢        (2) 

Where 𝑆𝑓 is the level of schooling of the father. However, if it is not specified, we may derive 

the algebric relationship for our estimated coefficient (𝛽1̂): 

𝛽1̂ =  𝛽1 + 𝛽2𝛿1          (3) 

Where 𝛽1 and 𝛽2 are the true coefficients from model (2), and 𝛿 is the slope from the simple 

regression: 

𝑆 = 𝛿0 + 𝛿1𝑆𝑓 + 𝜗        (4) 

So, if there’s a positive relationship between a population schooling and their father’s 

schooling, our estimated 𝛽̂1 will be biased upwards. 

2. Measurement error bias 

Let’s say that people are randomly mistaken (or lying) about their own schooling level. So, our 

variable is: 

𝑆̌ = 𝑆 + 𝜌          (5) 

Imagine that our mincerian equation (1) is not underspecified, so there’s no omitted variable 

bias. That means that our estimated coeficiente is: 

𝛽1̂ =
𝜎𝑆

𝜎𝑆+𝜎𝜌
𝛽1          (6) 

Where 𝜎 is the standard deviation.  

So, measurement error measurement bias our estimate downwards.  

Usually, omitted variable bias and measurement error bias have opposite directions, so when 

they are jointly playing a role in a regression, they are actually mostly cancelled off. However, 

if one may not rely on the estimate, there are a few ways in order to address this problem. 

One of the main ways to do so is to use the “fixed-effects” approach, for panel data. 

 



Fixed-effects regressions 

Panel data are those in which you have the same set of observations in more than one period 

in time. Therefore you can use the "fixed-effects" strategy, where you control all fixed mean 

differences between people in any observable or unobservable predictors, such as genetic and 

environmental differences among workers with each level of schooling. Fixed time effects also 

control mean changes that have occurred for all groups. 

Summarizing, the estimated 𝛽1 will capture the changes of schooling and earnings that 

happened differently for workers. Our fixed-effects mincerian equation is presented below: 

𝑌𝑖,𝑡 = 𝛽0 + 𝛽1𝑆𝑖,𝑡 + 𝛽𝑘𝑋𝑘,𝑖,𝑡 + ∑ 𝛿𝜏1(𝑡 = 𝜏)𝑇
𝜏=1 + ∑ 𝛾𝜑

𝐼
𝜑=1 1(𝑖 = 𝜑) + 𝜀𝑖.𝑡   (7) 

 

Where ∑ 𝛿𝜏1(𝑡 = 𝜏)𝑇
𝜏=1  are time fixed-effects and ∑ 𝛾𝜑

𝐼
𝜑=1 1(𝑖 = 𝜑) are individual fixed-

effects. Panel data also allows the researcher to control for the different trends in broader 

groups, such as cities, states and aggregated low/high levels of schooling. 

Fixed-effect regressions still may be biased. For instance, omitted variable bias may be present 

if there’s any correlation among the changes of schooling, income and another factor, like 

other public policies that were implemented along with more provision of education. 

However, when the observations are on the individual level, fixed-effects may be proper 

controls for any endogeneity.  

Propensity Score Matching (PSM) 

Propensity-score matching uses an average of the outcomes of similar subjects who get the 

other treatment level to impute the missing potential outcome for each subject. The average 

treatment effect (ATE) is computed by taking the average of the difference between the 

observed and potential outcomes for each subject. 

PSM does not need bias correction, because it matches on a single continuous covariate. 

The propensity score was defined by Rosenbaum and Rubin (1983a) to be the probability of 

treatment assignment conditional on observed baseline covariates. The propensity score is a 

balancing score: conditional on the propensity score, the distribution of measured baseline 

covariates is similar between treated and untreated subjects. Thus, in a set of subjects all of 

whom have the same propensity score, the distribution of observed baseline covariates will be 

the same between the treated and untreated subjects. 

Therefore, the “propensity score” is the conditional probability of receiving treatment given 

the variables observed X before treatment: 

p(X) =Pr{D = 1|X} = E{D|X}   (8) 

 

Lemma 1: Balance the pretreatment variables, X, given the propensity score (Rosenbaum and 

Rubin, 1983) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144483/#R63


 Let p(X) be the “propensity score” 

         X  D | p(X)       (9) 

or 

    F(X|D=1,P(X))=F(X|D=0,P(X))      (10) 

 

Motto 2: Not biased, given the “propensity score” (Rosenbaum and Rubin, 1983) 

Assuming there is conditional independence:  

              Y (1), Y (0)  D | X      (11) 

 

So the treatment assignment is not biased given the “propensity score”   

   Y (1), Y (0)  D | p(X)       (12) 

 

Using the “propensity score” we can homogenize treatments and controls based on this, 

instead of the multidimensional vector X 

 E{Yi(0)|Di = 0, p(Xi)} = E{Yi(0)|Di = 1, p(Xi)} = E{Yi(0)|p(Xi)}    (13) 

 E{Yi(1)|Di = 0, p(Xi)} = E{Yi(1)|Di = 1, p(Xi)} = E{Yi(1)|p(Xi)}    (14) 

Using these expressions, we can define for each cell defined by p(X): 

                   p(x)  E{i|p(Xi)}      (15)   

           E{Yi(1)|p(Xi)} - E{Yi(0)|p(Xi)}     (16) 

     = E{Yi|Di = 1, p(Xi)} - E{Yi|Di = 0, p(Xi)}.    (17) 

Parametric estimation; most usual example: Logit (or probit) 

Pr{Di|Xi} =
eλh(Xi)

1+eλh(Xi)      (18) 

Define the sample to estimate the effect in such a way that the propensity score of the 
treatment and control group satisfies: 

0<a<P(X)<b<1      (19) 

Maximum area for feasible values of “a” and “b” 

a = max {min (treated support, counterfactual support)} 

b = min {max (treated support, counterfactual support)} 



The average of the result variable for the treated group is:  

𝑌̅(1) =
1

𝑁𝑇
∑ 𝑌𝑖𝑖 ∈ 𝑡𝑟𝑒𝑎𝑡𝑒𝑑      (20) 

It is necessary to estimate this average for the counterfactual group: 

• Closest neighbor (homogenization one by one or more than one) with or without 
substitution 

• Kernel 

Steps to follow: 

1. For each propensity score value between the treaties compute the following equation using 
the control sample 

          (21) 

 

 Where W is a function of weights that decreases with distance. K denotes a kernel function: 

 

           (22) 

 

 

 

Another possibility is to use what became known as Propensity Score Weghting. This method 

mixes PSM with regression, which can increase the efficiency of the estimators because you 

use the covariates when calculating the ToT. In this case, the model is: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽𝑘,𝑖𝛾𝑘 + 𝜀𝑖     (23) 

Weights are 1 for treated individuals. For individuals in the control group, the weights are: 

𝑃(𝑋)̂
1 − 𝑃(𝑋)̂

⁄     (24) 

 

 

 

 

 )()(ˆ
1

))(ˆ(
1

1

ki

N

k

kN

j

j

i

C XPXPYXPY
C

C
 

 







 









0

)
)()(

(

)
)()(

(

))((

D

ki

ki

h

XPXP
K

h

XPXP
K

XPW



Heckman Adjustment 

Considering Yi = β0 + β1Si + βkγk,i + εi , but where not all Yi is observed, but rather there is 

a selection bias, where: 

P(Labor)i = δ0 + ∑ δkzk,ik + ϵi   (25) 

Where cor(ε, ϵ) = ρ > 0 

That is, an individual’s labor supply generates a selection bias on mincerian equation 

estimates. That is particularly true for women.  

Heckman adjustment controls this correlation, adding to the mincerian equation the cdf of 

predicted P(Labor).  

Quantile Regression 

Instead of using a mean function of linear regression, one may use the conditional median 

function Qq(y|x), where q is the Xth percentile. While OLS minimizes ∑ εi
2, a quantile 

regression, also known as least-absolute-deviations (LAD) regression, minimizes ∑ |εi|. 

Quantile regressions provide snapshots of different points of a conditional distribution. They 

constitute a parsimonious way of describing the whole distribution and should bring much 

value-added if the relationship between the regressors and the independent variable evolves 

across its conditional distribution. 

For example: 

𝑌𝑖 = 𝛽0,0.5𝑡ℎ + 𝛽1,0.5𝑡ℎ𝑆𝑖 + 𝛽𝑘,0.5𝑡ℎ,𝛾𝑘,𝑖 + 𝜀𝑖  (26) 

So, β1,0.5th is the estimate of having one more year of study over the median (it may be any 

quantile of the distribution). 

Median regression is more robust to outliers than least squares regression, and is 

semiparametric as it avoids assumptions about the parametric distribution of the error 

process. While OLS can be inefficient if the errors are highly non-normal, QR is more robust to 

non-normal errors and outliers. QR also provides a richer characterization of the data, allowing 

us to consider the impact of a covariate on the entire distribution of y, not merely its 

conditional mean. 

For visualization and application of quantile regressions, check the link below: 

https://data.library.virginia.edu/getting-started-with-quantile-regression/ 

 

 

 

 

https://data.library.virginia.edu/getting-started-with-quantile-regression/


Regression Discontinuity Design 

Currently, this is an useful causal evaluation method. This is because RDD estimates the 

average treatment effect by exploring a selection rule based on a discontinuity in a particular 

observable variable. 

For example, let's think about the college entrance examination, in which the students enter 

for college if they take a certain score. In principle, students with higher grades in the college 

entrance examination tend to perform better in the job market, which may bias the estimate. 

But in this case, we can compare students who took notes very close to the minimum score, up 

and down. 

  

Say that f [.] is the function, x is the continuous variable (such as the score). xm is the 

treatment threshold separating the units (individuals) into two groups: those receiving 

treatment (D = 1) and those who did not receive (D = 0). So, our regression is like: 

𝐷𝑖 =  𝐷(𝑥𝑖) = 𝑓[𝑥𝑖 >  𝑥𝑚]    (27) 

𝑌𝑖  =  𝛽0 + 𝛽1𝑆𝑐𝑜𝑟𝑒𝑖 + 𝛽2𝐷𝑖 + 𝛽3𝑆𝑐𝑜𝑟𝑒𝑖 × 𝐷𝑖 + 𝜀𝑖   (28) 

Usually, the sample is subset into a window of x around xm. If not small enough, our regression 

may add higher polynomial degrees for the running variable X, in order to have a better fit. In 

this first example presented, we have the case of a "sharp RDD", in which the cutoff 100% 

determinant for the treatment. However, in some cases it may not be so. 

Sometimes passing from the left to the right side of the cutoff does not guarantee treatment, 

but significantly increases its likelihood. In this case, we have what is called "fuzzy RDD", in 

which the methods of "sharp RDD" and instrumental variables are combined. More 

specifically, the discontinuity will instrument the treatment, as showed below. 

𝑋𝑖  =  𝜃0 + 𝜃1𝑆𝑐𝑜𝑟𝑒𝑖 + 𝜃2𝐷𝑖 + 𝜃3𝑆𝑐𝑜𝑟𝑒𝑖 × 𝐷𝑖 + 𝜀𝑖    (29) 

𝑌𝑖  =  𝛽0 + 𝛽1𝑋̂𝑖 + 𝜀𝑖    (30) 
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