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MINCERIAN (Log-linear) INCOME EQUATION 
The mincerian equation of wage determination is the basis of an enormous literature 

on empirical economics. Jacob Mincer's (1974) wage model is the framework used to 

estimate returns to education, returns to quality of education, returns to experience, and so 

on. Mincer developed an income equation that would be dependent on explanatory factors 

associated with schooling and experience, as well as possibly other attributes, such as 

gender, for example. Identifying education costs and labor earnings made it possible to 

calculate the internal rate of return of education, which is the discount rate that equalizes 

the cost and the expected gain of investing in education. 

It is the basis of education economics in developing countries and its estimation has 

already motivated hundreds of studies, which try to incorporate different educational costs, 

such as taxes, tuition, opportunity costs, teaching materials, as well as the uncertainty and 

expectation of the agents at their decisions, technological progress, non-linearity in 

schooling, etc. It is also used to analyze the relationship between growth and level of 

schooling of a society, as well as effects on inequality. 

One of the great virtues of the Mincerian equation is to incorporate a single equation 

into two distinct economic concepts:  

(a) a price equation revealing how much the labor market is willing to pay for 

productive attributes such as education and experience and    

(b) The rate of return of education, which should be compared with the market interest 

rate to determine the optimal amount of investment in human capital. 

 

2. Regression Model 

The typical econometric regression model derived from the Mincerian equation is: 

  

ln w = β0 + β1 educ + β2  exp + β3  exp² + γ′ x + є 

where  

w is the wage received by the individual, 

 educ corresponds to schooling, usually measured by years of study 

 exp is experience, usually approximated by the age of the individual 

 x is a vector of individual observable characteristics, such as gender, region. etc   

є it's a stochastic error 

 

a. The Coefficient and Attribute Premium 

This is a regression model in the log-level format, that is, the dependent variable, the wage 

is in logarithmic format and the most relevant independent variable, schooling, is in level 

format. Therefore, the coefficient β1 measures how much one year more of schooling 

causes in proportional variation in the wage of the individual. For example, if β1 is 

estimated at 0.18, this means that each additional year of study is related on average with a 

wage increase of 18%. This corresponds to the premium of the attribute (or rate of return if 

the costs were zero). Mathematically, we have: 

    Deriving, we find that: ( ∂ ln w / ∂ educ )= β1 

    On the other hand, by the chain rule, we have: 

( ∂ ln w / ∂ educ ) = ( ∂ w / ∂ educ ) ( 1 / w ) = ( ∂ w / ∂ educ ) / w) 

    Thus, β1=(∂w/∂educ)/w, corresponds to the percentage variation of the wage from a 

increase of one year of study.. 
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The coefficient of the mincerian regression with only the constant and a specific variable, 

say education, gives the gross or uncontrolled relative premium in terms of income 

variation. 

 

The coefficient of a variable of a multivariate mincerian regression (that is, a log-linear 

equation with a constant and a series of additional variables) gives us the marginal 

controlled relative premium in terms of income variation. Thus, a tentative to isolate the 

effect of this variable from the possible correlations with the other variables considered. 

 

b. The R2 and Inequality Decomposition1 

 

The R2 of the mincerian regression corresponds to the variance of the log wage explained 

by the exogenous variables of the regression, that is, the portion of the inequality explained 

by the set of variables. 

The R2 of a regression with only the constant and a specific variable, say education, 

gives the gross contribution of that variable to the total inequality (as the Te/T of Theil 

index). 

The R2 of a regression minus the R2 of the same regression without one of its 

variables informs the explanatory power of this omitted variable, controlled by the others, 

in explaining the total inequality. This corresponds to the marginal contribution of that 

variable to the total inequality (as the Te/T of Theil index) 

                                                 
1  The coefficient of determination r² (case of two variables) or R² (multiple regression) is a synthetic 

measure that tells how well the regression line of the sample fits the observed data. 
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Where: 

SQT = SQE + SQR 

SQT = Sum of Total Squares (SQT) 

SQE = Sum of Explained Squares (SQE) 

SQR = Sum of Residual Squares (SQR) 

 

Alternatively, we can define: 
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Thus, the R2 quantity defined is known as the determination coefficient (of the sample) and is the 

measure used as the degree of adjustment of a regression line. Translating, R2 measures the proportion or 

percentage of the total left-side variation of the equation explained by the regression model. 
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Applying the Mincerian Equation to Inequality Decomposition Socio-Demographic 

Determinants  

 

The main results of a multivariate analysis of per capita income distribution between 2001 

and 2008 using a mincerian earnings equation approach are presented here. Standard socio-

demographic variables such as gender, ethnicity, age, migration status (with respect to 

states and countries), years of schooling and spatial variables (27 Brazilian States 

interacting with 5 city sizes (periphery of metropolitan areas, capitals, urban non 

metropolitan and non capitals and rural areas) are used.  

Table below shows the gross contribution of these variables to the inequality of per capita 

household incomes. This is done simply by means of independent regressions of each 

variable plus a constant on the particular income concept. The data show first that the six 

education categories of the household head explain one quarter of total income variation in 

2008 - the single most important variable to explain inequality. In 2001, just before the 

sharp inequality fall, this explanatory power was even higher, 31,31%. A similar effect 

happens with per capita labor earnings. Geographic variables and ethnicity have also lost 

explanatory power between 2001 and 2008. Gender kept a constant null explanatory power 

probably because the results are considered in per capita terms and not at individual levels. 

Migration increased slightly its explanatory power and so did the age variable, especially 

when considering all income sources. This capture the effect of the somewhat generous 

non-contributory pension system turned towards the elderly in Brazil. 
Gross Contribution to Income Inequality (in percentages) -  R2 - CTE + VAR2 

Per Capita Income  All Income Sources           Labor Earnings 

 Variable 2008 2001 2008 2001 

1 Gender 0,0020 0,0002 0,0305 0,0122 

2 Age 8,3227 7,0210 4,6073 4,1649 

3 Education 25,0497 31,3089 29,0560 33,3025 

4 Ethnicity 7,8616 10,3042 7,0688 9,4793 

5 Migration 2,5821 2,3392 2,0506 2,0636 

6 Geography 18,1450 21,1074 20,6631 23,1793 

Inequality decomposition where the interaction between different variables is taken into account is 

explored in Table below. It basically shows the share of total variation (total R2) explained when 

extracting each variable in turn from the complete regression. The data shows similar qualitative 

results to the previous exercise, namely: a reduction in education explanatory power and an increase 

in age explanatory power. Geographic variables present an increase in their relative explanatory 

power.        Table.  Net Contribution to Income Inequality – Partial R2 (in percentages) 

  % Difference of R2 without a specific Variable with respect to full regression R2 

Per Capita Income  All Income Sources           Labor Earnings 

 Variable 2008 2001 2008 2001 

1 Gender 0,2046 0,0918 0,3178 0,1605 

2 Age 14,3245 10,2909 5,5695 3,8033 

3 Education 34,2615 35,4399 35,7792 35,4216 

                                                 
2 For example in the case of education:  ln w = β0 + β1 educ + є 
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Are B’sDifferent from zero? 
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All in all, the main result to be stressed in these inequality decomposition exercises with 

respect to socio-economic variable is the reduction of education explanatory power. This 

may be explained by the increase of the supply of education with the relative stagnation of 

Brazilian labor markets until 2004. Incidentally, this is the mirror image of seminal work of 

Carlos Langoni (1973) about inequality increase in Brazil during the 1960s. Even after the 

reduction of gross explanatory power of years of schooling in income and labor earnings 

inequality the last seven years it remains by far the most important predictor available for 

income distribution. 

 

 

i. Difference in difference estimator 

Example of methodology applied to two different periods 

In economics, vast research is done analyzing the so-called experiments or quasi-
experiments. To analyze a natural experiment it is necessary to have a control group, that 
is, a group that was not affected by the change, and a treatment group that was directly 
affected by the event of interest, both with similar characteristics. In order to study the 
differences between the two groups, pre and post-event data are needed for both groups. 
Thus, the sample is divided into four groups: the pre-change control group, the post-
change control group, the pre-change treatment group, and the post-change treatment 
group.  

The difference between the differences between the two periods for each of the groups is 
the difference in difference estimator, represented by the following equation: 

g3 = (y2,t – y1,t) – (y2,c – y1,c) 

Where each y represents the mean of the studied variable for each year and group, with the 
subscript number representing the sample period (1 for before the change and 2 for after 
the change) and the letter representing the group to which the data belongs (c for the 
control group and t for the treatment group). g3 is the so-called difference in difference 
estiator. Once the g3 is obtained, the impact of the natural experiment on the variable to be 
explained is determined. 

In order to study the impacts of local infrastructure policies between two groups, we need 
data at least two moments in time for both of them. Our sample is thus four fold. The 
interactive effect between the treatment group dummy (dT=1; dT=0 (control group 
omitted category)) and the time dummy (d2 =1; d2=0 (initial instant omitted category), 
which as we will see gives us the difference-in-difference estimator. 

 Mathematically, we can represent this difference-in-difference estimator (D-D) used from 
equations in discrete or continuous variables (for example, in the case of logistic 
regressions or  mincerian-type per capita income equations):  

  Y = g0 + g1*d2 + g2*dT+ (D-D)*d2*dT + other controls 
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Falling Inequality 2001 to 2009 – Higher income growth for low income groups*:  
 

1) Taking the variable of greatest interest, the difference-difference estimator (D in D), 

indicates higher income growth for lower-income groups:  

– Region: Northeast x Southeast  ( 6% when controlled)  

– State - Maranhão x São Paulo  (12% controlled)  

– Rural Area x Metro Region  (16% controlled)  

– Females X Males  ( -1% controlled) *exception 

– Blacks  X Whites  (4% controlled)  

Browns X Whites  (5% controlled)  

– Construction X other sectors  (3% controlled) 

– Illiterate/0 years x 12 + years  (40% controlled) 41% not controlled 

 

2) We present below the interactive term of the last controlled model. Full template 

can be found in the course webpage. 

  

Example using Schooling variables, Controls and Constant Ommited 

 

 


